CLOCK Promotes Endothelial Damage by Inducing Autophagy through Reactive Oxygen Species
نویسندگان
چکیده
A number of recent studies have implicated that autophagy was activated by reactive oxygen species (ROS). Our previous report indicated that CLOCK increased the accumulation of ROS under hypoxic conditions. In this study, we investigated the mechanisms by which CLOCK mediated endothelial damage, focusing on the involvement of oxidative damage and autophagy. Overexpression of CLOCK in human umbilical vein endothelial cells (HUVECs) showed inhibition of cell proliferation and higher autophagosome with an increased expression of Beclin1 and LC3-I/II under hypoxic conditions. In contrast, CLOCK silencing reversed these effects. Interestingly, pretreatment with 3-methyladenine (3-MA) resulted in the attenuation of CLOCK-induced cell autophagy and but did not influence the production of intracellular reactive oxygen species (ROS). Furthermore, Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt), a ROS scavenger, significantly attenuated CLOCK-induced cell autophagy. In addition, we found that overexpression of CLOCK had no significant effects on the production of ROS and expression of Beclin1 and LC3-I/II under normoxic conditions in HUVEC. In this present investigation, our results suggested a novel mechanism of action of CLOCK in HUVECs, opening up the possibility of targeting CLOCK for the treatment of vascular diseases.
منابع مشابه
Monotropein promotes angiogenesis and inhibits oxidative stress‐induced autophagy in endothelial progenitor cells to accelerate wound healing
Attenuating oxidative stress-induced damage and promoting endothelial progenitor cell (EPC) differentiation are critical for ischaemic injuries. We suggested monotropein (Mtp), a bioactive constituent used in traditional Chinese medicine, can inhibit oxidative stress-induced mitochondrial dysfunction and stimulate bone marrow-derived EPC (BM-EPC) differentiation. Results showed Mtp significantl...
متن کاملمروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )
ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2). Autophagy is a catabolic pathway for degradation ...
متن کاملUpconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation
Macrophage-derived foam cells are a major component of atherosclerotic plaques and have an important role in the progression of atherosclerotic plaques, thus posing a great threat to human health. Photodynamic therapy (PDT) has emerged as a therapeutic strategy for atherosclerosis. Here, we investigated the effect of PDT mediated by upconversion fluorescent nanoparticles encapsulating chlorin e...
متن کاملAutophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy
Autophagy is an important cellular program with a "double face" role, since it promotes either cell survival or cell death, also in cancer therapies. Its survival role occurs by recycling cell components during starvation or removing stressed organelles; when damage becomes extensive, autophagy provides another programmed cell death pathway, known as Autophagic Cell Death (ACD). The induction o...
متن کاملGreen tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity
Objective(s):Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavengingactivities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors cells (EPCs) against oxidative stress through antioxidant mechanisms. Materials and M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016